Machine Learning
- 监督学习:提供的反馈包含正确答案
- 非监督学习:只给惩罚值
- 学习函数:连续情形叫回归,离散情形叫分类
- 支持向量机:容易上手
Murphy
- Market basket analysis: 市场篮子分析
- Frequent itemset mining: association rules
-
Joint density model
- Data mining: 强调模型的可解释型
-
Machine learning:强调模型的准确性
- Parametric model: 参数个数固定
- Nonparametric model: 参数个数不固定
- K-最近邻居
- Memory-based learning
- Instance-based learning
- Voronoi tessellation: K = 1, 每个给定点对应一个区域,这个区域内的点与这个给定点的距离比与其它给定点的距离都小。
- K-最近邻居
- 维度的诅咒
- 当N趋于无穷时,KNN可以达到最佳理论精度的一半
- KNN对高维数据不适用
- 体积比与尺度比的关系:只占很小一部分体积,可能对应很大一部分尺度
- 解决方法:引入inductive bias,先验偏好,参数化模型
- 线性回归
- 把基函数换成非线性函数,就可得到SVM,神经网络,分类与回归树等模型。
- Logistic regression
- Decision rule
- Linearly separable
- Overfitting 在KNN情形,如果K = 1…
- Model selection
- Data partition: training set and validation set
- Cross validation
- Round-robin fashion
- Leave-one out cross validation
- No free lunch theorem
- No universally best model
- Wolpert 1996
- “Probability is nothing but common sense reduced to calculation.” Pierre Laplace 1812
- corr[X, Y] = 1 iff Y = aX + b
- Correlation coefficient is not the slope of the regression line.
- But the “normalized” one is.
- Correlation coefficient = 0 does not imply independence!
- KL divergence: Kullback-Leibler divergence = relative entropy
-
KL(p q) >= 0 with equality iff p = q.
-
- Discrete distribution with maximum entropy is the uniform distribution
- Principle of insufficient reason
- Mutual information
-
I(X; Y) = KL(p(X, Y) p(X)p(Y)) - I(X; Y) >= 0 with equality iff p(X,Y) = p(X)p(Y)
-
I(X; Y) = H(X) - H(X Y) -
H(X Y) = sum p(Y) H(X Y)
-
- Pointwise mutual information
-
- 连续随即变量的mutual information
- 离散化?结果受到离散方法的影响。所以这个办法不好。
- MIC: maximal information coefficient